Ykp. ciopomemeopon. xc., 2015, Nel6

PACS numbers: 87.23. n, 89.60. k,07.88. y

WAVELET AND MULTIFRACTAL ANALYSIS OF THE NONLINEAR STRUCTURES
IN CHAOTIC PROCESSES FOR HYDROECOLOGICAL SYSTEMS

N.G. Serbov, Cand.Sci, (Geogr.),
0.Yu. Khetselius, Dr. Sci. (Phys.-Math.)
A.A. Svinarenko, Dr. Sci. (Phys.-Math.),
O.N. Grushevsky, Cand.Sci. (Geogr.)

Odessa State Environmental University, 15,
Lvivska St., 65016 Odessa, Ukraine, svinarenkoaa@gmail.com

This paper goes on our investigations of the fractal structures in the chaotic and turbulent processes and
connected with a great importance the experimental and theoretical studying of the non-linear dynamical sys-
tems with aim to discover the fractal features and elements of dynamical chaos. In this paper on the basis of
wavelet analysis and multifractal formalism it is carried out an analysis of fractal structures in the chaotic
processes (the time series of the nitrates concentrations in the Small Carpathians river’s watersheds Svidnik-
Ondrava in the Earthen Slovakia) and the spectrum of the fractal dimensions has been computed. It is carried
out numerical modelling and fulfilled a comparison of theoretical data with the earlier received estimates on

the basis of other fractal formalism algorithm.
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1. INTRODUCTION

This paper goes on our investigations of the fractal
structures in the chaotic and turbulent processes [1,2]. Let
us remind that in last years it is of a great importance the
experimental and theoretical studying of the non-linear
dynamical systems with aim to discover the fractal fea-
tures and elements of dynamical chaos (e.g. [3-23]). One
of the effective approaches to solving such a problem is
the multifractal and wavelet analyses. The foundations
and application information on the continuous wavelet
transform-based method of multifractal analysis are pre-
sented in Ref. [3]. An extension of the concept of multi-
fractals to irregular functions through the use of wavelet
transform modulus maxima and potential and limitations
of the multifractal formalism in the study of non-
stationary processes and short signals are in details con-
sidered in these references. Especial attention is turned to
the multifractality loss effects in the dynamics of differ-
ent types of systems. A review of fundamental results on
the manifestation of fractal structure in wave (turbulent)
processes is presented in [3].

As it is indicated in many references (e.g. [3]) the
most natural and effective illustration of the chaos effect
can be observed in turbulent flows. In papers by Zaslav-
sky et al (e.g. [5]) the fractal properties of the sea surface
have been considered on the scales which are more than
the distortion correlation radius.

In this paper on the basis of wavelet analysis and
multifractal formalism it is carried out an analysis of

fractal structures in the chaotic processes (the time se-
ries of the nitrates concentrations in the Small Carpathi-
ans river’s watersheds Svidnik-Ondrava in the Earthen
Slovakia) and the spectrum of the fractal dimensions has
been computed. It is carried out numerical modelling
and fulfilled a comparison of theoretical data with the
earlier received estimates on the basis of other fractal
formalism algorithm.

2. METHOD: WAVELET EXPANSIONS AND MULTI-
FRACTALS

As the key elements of the wavelet-analysis and mul-
tifractal formalism have been presented ecarlier in details
(see for example, [1,2]), here we are limited only by the
key aspects. According to [1,2], the theoretical tool is in
fact based on the wavelet decomposition for analyzing
various signals. At present, the family of analyzing func-
tion dubbed wavelets are being increasingly used in prob-
lems of pattern recognition; in processing and synthesiz-
ing various signals; in analysis of images of any kind (X-
ray picture of a kidney, an image of mineral, etc.); for
study of turbulent fields, for contraction (compression) of
large volumes of information, and in many other cases.

Wavelets are fundamental building block functions,
analogous to the sine and cosine functions. Fourier trans-
form extracts details from the signal frequency, but all
information about the location of a particular frequency
within the signal is lost. At the expense of their locality
the wavelets have advantages over Fourier transform
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when non-stationary signals are analyzed. Here, we use
non-decimated wavelet transform that has temporal reso-
lution at coarser scales [1,2].

The dilation and translation of the mother wavelet
y(?) generates the wavelet as follows: yj,k(f) = 2j/2y(2jt
— k). The dilation parameter j controls how large the
wavelet is, and the translation parameter & controls how
the wavelet is shifted along the t-axis. For a suitably
chosen mother wavelet (), the set {yj,k};,k provides an
orthogonal basis, and the function f which is defined on
the whole real line can be expanded as

f(t)z ZCOk(PO,k(t)+ZJ: idjk\vj,k(t)

k=—0 Jj=lk=—o (1)

>

where the maximum scale J is determined by the
number of data, the coefficients ¢ represent the lowest
frequency smooth components, and the coefficients dj
deliver information about the behavior of the function f
concentrating on effects of scale around 2—j near time k X
2—j. This wavelet expansion of a function is closely re-
lated to the discrete wavelet transform (DWT) of a signal
observed at discrete points in time. In practice, the length
of the signal, say n, is finite and, for our study, the data
are available monthly, i.e. the function f{#) in Eq. (1) is
now a vector f = (f{¢t)),..., fit)) with t; =i/mandi=1,...,
n. With these notations, the DWT of a vector f is simply a
matrix product d = Wf, where d is an n x 1 vector of dis-
crete wavelet coefficients indexed by 2 integers, dj, and
W is an orthogonal » x n matrix associated with the
wavelet basis. For computational reasons, it is simpler to
perform the wavelet transform on time series of dyadic
(power of 2) length. One particular problem with DWT is
that, unlike the discrete Fourier transform, it is not trans-
lation invariant. This can lead to Gibbs-type phenomena
and other artefacts in the reconstruction of a function.
The non-decimated wavelet transform (NWT) of the data
(fit1), ..., f(t,)) at equally spaced points #; = i/n is defined
as the set of all DWT's formed from the n possible shifts
of the data by amounts i/n; i =1, ..., n.

Thus, unlike the DWT, there are 2 coefficients on the
J™ resolution level, there are n equally spaced wavelet
coefficients in the NWT

1 n i/2 if.

dy=n ZHZ’/ \|/[2-’ (z/n —k/n)lyi
k=0,...,n-1,

on each resolution level j. This results in log2(n) coef-
ficients at each location. As an immediate consequence,
the NWT becomes translation invariant. Due to its struc-
ture, the NWT implies a finer sampling rate at all levels
and thus provides a better exploratory tool for analyzing
changes in the scale (frequency) behavior of the underly-

ing signal in time. These advantages of the NWT over the
DWT in time series analysis are demonstrated in Nason et
al (e.g.[12]). As in the Fourier domain, it is important to
assess the power of a signal at a given resolution. An
evolutionary wavelet spectrum (EWS) quantifies the
contribution to process variance at the scale j and time k.
Another way of viewing the result of a NWT is to repre-
sent the temporal evolution of the data at a given scale.
This type of representation is very useful to compare the
temporal variation between different time series at given
scale. To obtain the results, smooth signal SO and the
detail signals D; (j =1, ..., J) are:

$ul)= Lo 1)

and

Dj(t)z idjk\vj,k(t)
= @

The fine scale features (high frequency oscillations)
are captured mainly by the fine scale detail components
Djand D-1. The coarse scale components Sy, Dy, and D,
correspond to lower frequency oscillations of the signal.
Note that each band is equivalent to a band-pass filter.
Further we use the Daubechies wavelet as mother wavelet
[11]. This wavelet is bi-orthogonal and supports discrete
wavelet transform. Using a link between wavelets and
fractals, one could make calculating the multi-fractal
spectrum. As usually, the homogeneous fractals are de-
scribed by single fractal dimension D(0). Non-
homogeneous or multifractal objects are described by
spectrum D(q) of fractal dimensions or multifractal spec-
trum A problem of its calculation reduces to definition of
singular spectrum f(a) of measure p. It associates Hauss-
dorff dimension and singular indicator o, that allows
calculating a degree of singularity: No(g)=e-fa). Below
we use a formalism, which allows defining spectra of
singularity and fractal dimension without using standard
Legandre transformations. Wavelet transformation of
some real function F can be also defined as [1]

x-b

W, [F(b,a)=(1/c) f:F(x)\P( )dx

€)

where parameter b denotes a shift in space (a space
scale). The analyzing splash ‘¥ has to be localized as in
space as on frequency characteristics. The most correct
way of estimate of the function D(h), o) is in analysis of
changing a dependence of the distribution function Z(g,a)
on modules of maximums of the splash-transfers under
scale changes

N(a)
Z=) (o(a)’
)
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Fig. 1 - The temporal changes in the concentrations of nitrates in some catchment of the Small Carpathians (Slovakia) [12].

where I=1,...,N(a); N(a) is a number of localized
maximums of transformation WW[F](b,a) for each scale
a; function m(a) can be defined in terms of coefficients of
the splash-transformations as

0;(a) =max | Wy [F](x,a")],
(x,a")el
a'<a (5)

where lieL(a); L(a) is a set of such lines, which make
coupling the splash-transformation coefficient maximums
(they reach or make cross-section of a level, which is
corresponding to scale a). In the limit a—0+ the distribu-
tion function Z(g,a) manifests the behaviour, which is
corresponding to a degree law:

Z(q,a)~at(q) .

To calculate a singularity spectrum, the standard ca-
nonical approach can be used. It is based on using such
functions:

1 0Z(a,q)
haqg)=——
(@) Z(a,q) Oq (6)
AR
— =Y oa) Inw,(a)
oq i=l , (7)
D(a,q) = qh(a,q) — In Z(a,q). )

The spectra D(g) and h(q) are defined by standard
way as follows:

D(q) = lim 24-9)
a—0 ln a (9)

>

h(q) = lim 220
a->0 Ina

(10)

Other details can be found in Refs. [11,15-18].

3. RESULTS AND CONCLUSIONS

As the initial data we use the results of empirical ob-
servations made on the watersheds in the region of the
Small Carpathians, carried out by co-workers of the Insti-
tute of Hydrology of the Slovak Academy of Sciences
[2]. Figure 1 lists the time (daily) series for the concentra-
tions of nitrates in the Svidnik: Ondrava watershed
(1.11.19830.10.1993).

The process is analyzed on the time intervals which
are more than the correlation scale, i.e., as one could wait
for here, a intermittency has a multi-fractal nature. Using
the PC complex “Geomath” (c.f.[15]) we have performed
the numerical calculations of the fractal spectrum. Our
numerical estimates have shown that the fractals dimen-
sions are lying in the interval [4.2-5.8]. These data are
satisfactory agreed with the preliminary estimates within
the simple standard multifractal definition modelling.
Therefore, our analysis confirms the universal conclusion
regarding availability of the multifractal features for the
watershed pollutants daily runoff series for the Danube
river [22].

Ykp. ciopomemeopon. xc., 2015, Nel6

173



N.G.Serbov, A.A.Svinarenko, O.Yu.Khetselius, O.N. Grushevsky

REFERENCES

Svinarenko A.A., Khetselius O.Yu., Mansarliysky V.F., Roma-
nenko S.I. Analysis of the fractal structures in turbulent processes.
Ukr. gidrometeorol. z - Ulrainian Hydrometeorology Journal,
2014, no. 15, pp. 74-78.

Khetselius O.Yu., Svinarenko A.A. Analysis of the fractal struc-

tures in wave processes. Visn. Odes. derz. ekol. univ.— Bulletin of

Odessa state environmental university, 2013, vol. 16, pp. 222-226.
Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh. The
Mandelbrot B. Fractal geometry of nature. Moscow: Mir, 2002.
Schertzer D., Lovejoy S. Fractals: Physical Origin and Properites.
N.-Y.: Plenum Press, 1990, pp. 71-92. (Ed.: Peitronero L.)
Zaslavsky G.M. Stochasticity of dynamical systems. Moscow:
Nauka, 1998.

Zosimov V.V., Lyamshev L.M. Fractals
Phys.Uspekhi, 1995, vol.165, pp. 361-402.
Grassberger P., Procaccia I. Measuring the strangeness of strange
attractors. Physica D., 1983, vol. 9, pp. 189-208.

Kaplan J.L., YorkeJ.A. Chaotic behavior of multidimensional

in wave processes.

difference equations. Functional differential equations and ap-
proximations of fixed points. Lecture Notes in Mathematics. Ber-
lin: Springer, 1979, no. 730, pp.204-227. (Eds: H.-O. Peitgen,
H.-O. Walter)

Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry
from a time series. Phys. Rev. Lett, 1980, vol. 45, pp. 712-716.
Schreiber T. Interdisciplinary application of nonlinear time series
methods. Phys. Rep., 1999, vol. 308, pp. 1-64.

Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM,
1992.

Morlet J., Arens G., Fourgeau E., Giard D. Wave propagation and
sampling theory. Geophysics, 1982, vol.47, pp. 203-236.

Nason G., von Sachs R., Kroisand G. Wavelet processes and
adaptive estimation of the evolutionary wavelet spectrum. J.Royal
Stat.Soc., 2000, vol. B62, pp. 271-292.

Glushkov A.V., Khokhlov V.N., Svinarenko A.A.,
yakova Yu.Ya., Prepelitsa G.P. Wavelet analysis and sensing the

Bun-

total ozone content in the earth atmosphere: Mycros technology
“Geomath”. Sensor Electr. and Microsys.Techn., 2005, vol.2(3),
pp. 51-60.

15.

16.

19.

20.

21.

22.

23.

24.

Glushkov A.V., Khokhlov V.N.,
teleconnection patterns: wavelet analysis. Nonlin. Proc.in Geo-
phys., 2004, vol. 11, no. 3, pp. 285-293.

Glushkov A.V., Loboda N.S., Khokhlov V.N., Lovett L. Using
non-decimated wavelet decomposition to analyse time variations

Tsenenko [.A.  Atmospheric

of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian
precipitation. Journal of Hydrology. Elsevier, 2006, vol. 322,
no. 1-4, pp. 14-24.

Sivakumar B. Chaos theory in geophysics: past, present and future.
Chaos, Solitons & Fractals, 2004, vol. 19, pp. 441-462.

Svoboda A., Pekarova P., Miklanek P. Flood hydrology of Dan-
ube between Devin and Nagymaros in Slovakia.- Nat. Rep.2000,
UNESKO.-Project 4.1. Intern. Water Systems. 2000. 96 p.

Pekarova P., Miklanek P., Konicek A., Pekar J. Water quality in
experimental basins. -Nat. Rep.1999 of the UNESKO.-Project 1.1.
Intern. Water Systems., 1999. 98 p.

Balan A K.,Systems Approach in hydrology: Extremal Hydrologi-
cal Events and Effect of Changes in Hydrospheres State. Proc. In-
tern. Conf. "Ecology of Siberia, the Far East and the Arctic".
SD RAN, 2001, p. 133.

Glushkov A.V., Balan A K., Multifractal approach for modeling
(for
Climatology and Hydrology, 2004,

flow and short-term hydrological forecasts example,
r. Danube). Meteorology,
no. 48, pp. 392-396.
Balan A.K. Method multifactorial system modeling in problems of
calculation extremal hydrological phenomena. Meteorology, Cli-
matology and Hydrology, 2002, no. 45, pp. 147-152.

Glushkov A.V. Khokhlov V.N., Serbov N.G., Balan A.K., Bun-
yakova Y.Y., Balanyuk E.P. Low-dimensional chaos in the time
series of concentrations of pollutants in the atmosphere and hydro-
sphere. Visn. Odes. derz. ekol. univ.— Bulletin of Odessa state envi-
ronmental university, 2007, no. 4, pp. 337-348.

Glushkov A.V., Khetselius O.Yu., Serbov N.G., Bun-
yakova Yu.Ya., Balan A.K., Buyadzhi V.V Modelling and fore-
casting the hydroecological systems pollution dynamics by using a
chaos theory methods: I. Advanced data on pollution of the Small
Carpathians river’s watersheds. Visn. Odes. derz. ekol. univ.— Bul-
letin of Odessa state environmental university, 2015, no.19,

pp.131-136.

BOUBJIET U MYJIbTU®PAKTAJIBHBIN AHAJIN3 HEJJUHEMXHBIX
CTPYTYP B XAOTHYECKHUX IMTPOLNECCAX JJIA THAPOIKOJOI'MYECKUX CUCTEM

H.T'. Cep0oB, x.reorp.H.,

A.A.CBHHapEHKO, 1-p ¢.-M. H., pod.,

0.10. Xeneaunyc, 1-p ¢.-m. 1., ipod.,

O.H. I'pymieBckuii, K.reorp.H.

Odecckuii 20cy0apcmeentvlill HIKOI0SUYECKUll yHusepcument,

ya. JIveoeckasa, 15 , 65016, Odecca, Ykpauna , svinarenkoaa@gmail.com

Jlannas paboTta IpooDKaeT HAIlM KCCIIeIOBaHUs (DPaKTAIBHBIX CTPYKTYP B XaOTHYECKHUX U TypOyJIeHT-

HBIX IIpoleccax U CBsA3aHa C 0OJIBILION AKTYaJIbHOCTBIO U BaXKHOCTBIO SKCIICPUMEHTAJIbHOI'O U TEOPETUYECKO-

TO W3YYEHHs HEIMHEWHBIX XAOTHYECKUX AWHAMHYECKHX CHCTEM C ILEeNbI0 OOHapyXeHHs (paKTalIbHBIX

CTPYKTYp U CBOMCTB M 3JIEMEHTOB AWHAaMU4YeCKOro xaoca. Ha ocHOBe BeiiBieT-aHaim3a U MyJIbTH(paKTAIb-
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HOro (hopMas3Ma OCYLIECTBIISETCS aHAIN3 (PAKTAIBHBIX CTPYKTYP B XaOTHYECKUX IPOLECCOB (BPEMEHHbIE
PsLIBI KOHIIEHTpAMid HUTpaToB 11t Bopopasnena Svidnik-Ondrava Mansix Kapnat B Bocrounoii CioBakum)
M BEIYHCIICHO COOTBETCTBYIOIINH CHEKTP (paKkTaIbHBIX pa3MepHOCTEH. BrimonHen ducieHHOe MOJEIHPOBa-
HHE U MPOBEJICHO CPAaBHEHHE TEOPETHYECKUX JAHHBIX C PaHee MOJyYCHHBIMH OLICHKAMH Ha OCHOBE APYTHX
aNrOpUTMOB ()PaKTaIBHOTO AHAIU3A.

KnroueBble cJIOBa: THAPOJIOTMYECKHE CHUCTEMBI, ()paKTalbHbIE CTPYKTYpBI, XaOTHYECKHE HPOLECCHI,

BPEMCHHBIC psIbL KOHHCHTpaHI/Iﬁ HUTPATOB

BEHUBJIET I MYJbTU®PAKTAJIBHUMA AHAJII3 HEJTHIHHAX CTPYKTYP
Y XAOTHYHHUX MPOLECAX JJIA I'TJPOEKOJIOTTYHUX CUCTEM

ML.T'. Cep0oB, k.reorp.H.,
A.A,CBUHapeHKO, 1-p ¢.-M. H., Ipod.,
0.10. Xenemniyce, 1-p ¢.-M. H., pod.,
O.M. I'pymieBcbKHii, K.T€0OTp.H.

Ooecvruti Oeparcashull eKoN0SUHUL YHIgepcumen,
syn. Jlvsiecoka, 15, 65016 Oodeca, Vkpaina, svinarenkoaa@gmail.com

IpencraBnena pobGOTa MPOJOBKYE HAIll JOCITIKEHHS (pPaKkTaTbHUX CTPYKTYP B XaOTHYHHX 1 TypOyJe-
HTHHX IIPOIECax i MOB'sA3aHa 3 BEJIMKOI aKTYaJIbHICTIO 1 Ba)KJIUBICTIO EKCIEPUMEHTAIBHOTO 1 TEOPETUYHOTO
BUBYCHHS HENIHIHHUX XaOTHYHHX JHMHAMIYHHX CHCTEM 3 METOIO BHSBJICHHS (DpaKTaIbHHX CTPYKTYp i BJac-
THUBOCTEH Ta €JIEMEHTIB AMHAMIYHOTO Xaocy. Ha ocHOBI BeiiBneT-aHami3y Ta MyJIbTU(PPAKTATEHOTO (pOpMati-
3My 34IHCHIOETBCS aHai3 (PPaKTAIBHUX CTPYKTYP B XAOTHYHUX IpoIiecax (4acoBi psay KOHIIEHTPALi HiTpa-
TiB a7 Bogoniny Svidnik-Ondrava Manux Kapnar y Cxinniii CoBaydnHi) i 00YHCICHO BiAMOBIIHUI CLICKTP
(bpakragpHUX po3MipHOCTEH. BUKOHAHO YKMCEIbHE MOJCIIOBAHHS Ta IPOBEACHO MOPIBHSHHS TEOPETUYHUX
JAHWX 3 paHillle OTPUMAHUMH OLlIHKaMH Ha OCHOBI iHIITNX aJTOPUTMIB (PpaKTaTBHOTO aHATi3Y.

KurouoBi ciioBa: rigponoriuti cucteMy, GpakTanbHi CTPYKTYPHU, XaOTHUYHI MIPOLIECH YaCOBI PsiIH KOHIIE-
HTpALiif HITpaTiB
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