Physical fundamental of layered structure stability of river-sea region (on the example of the Kola Bay)

  • S.І. Bardan
  • B.M. Dolgonosov
  • N.G. Serbov
Keywords: river-sea mixing zone, lamellar structure, convective-diffusion transfer, solution interface stretching, effect of restraining diffusion, fractal scale-invariant relief


Introduction. The process of transfer of dissolved salts in the mixing zone of river-sea in the early stages of mixing. Using the equation of convection-diffusion of impurity transport using variable coefficients of diffusion processes for the analysis of neighborhoods interfaces solutions. The analytical description and modeling of the processes and to assess their impact on the various components of the ecosystem.

The experimental data. We used materials of field observations in the areas of water mixing Kola Bay total length of over 60 km. and the period of renovation of water in the mixing zone, depending on the season at 3-10 days. The results of measurements of the hydrophysical parameters in Kola Bay are presented according to the 25 stations separately for spring and autumn seasons, with a total of more than 5600 field observations.

Results. On the basis of the analytical solution of the problem set that microcurrents gradient across the axis of elongation of form bi-layer hydrodynamic barrier layer, with the effect of blocking the diffusion of ion transport, which contributes to the conservation and sustainability of the layered structures. The results of field measurements for the Kola Bay, confirming the theoretical conclusions. Lamellar structure is formed in the areas of initial contact treatment of various origins, comes from a steady beam isohaline 10-33 ‰, which spreads along the fiber with isohaline 24,7 ‰, extending the strong deceleration at a steady angle of inclination of the border section area of river-sea.

Conclusions. The theoretical conclusions about the formation of a special layer at the boundaries of the mixing zone, the physical effect of blocking ion transport and accelerates the heat transfer through the boundary between fresh and marine waters. Modeling of pollutant transport model for lamellar. Various models of formation of the layered structure in contact marine and fresh waters with different ionic composition.


Bouden K. Fizicheskaya okeanografiya pribrezhnykh vod [Physical oceanography of sea-side water]. Moscow, 1988. 324 p.

Ghordeev V.V. Rechnoi stok v okean i cherty ego geohimii [River runoff into the ocean and features of its Geochemistry]. Moscow, 1983. 160 p.

Shulejkyn V.V. Fizika morja [Physics of the sea]. Moscow; 1968 1083 p.

Fedorov K.N. Fizicheskaja priroda i struktura okeanicheskih frontov [Physical nature and structure of oceanic fronts]. Leningrad, 1983. 296 p.

Roberts P.J. R., Webster D. Turbulent diffusion. Environmental fluid mechanics - Theories and Application. Reston: ASCE Press, 2002. 467 p.

Gidrometeorologija i gidrohimija morej SSSR. T.1, Barencevo more. Vyp.2. Gidrohimicheskie uslovija i okeanologicheskie osnovy formirovanija biologicheskoj produktivnosti [Hydrometeorology and hydrochemistry of USSR seas. Vol.1, the Barents Sea. Iss.2. Hydrochemical conditions and oceanographic basis for the formation of biological productivity]. Leningrad, 1992. 182 p.

Dolgopolova E.N., Isupova M.V. Vodnye resursy - Water resources, 2010, vol. 33, no. 3, pp. 274-291.

Vernadskyj V.Y. Istorija mineralov zemnoj kory. T.2. Istorija prirodnyh vod: Izbrannye sochineniya, T. IV, Kn.2 [The history of mineral crust. Vol.2. History of natural waters: Selected Writings, Vol.IV, Part.2.]. Moscow, 1960. pp. 7-538.

Lisitsyn A.P. Ledovaja sedymentacyja v morjakh y okeanakh [Ice sedimentation in seas and oceans]. Moscow, 1994. 450 p.

Emelianov G.M. The Barrier Zones in the Ocean. Berlin–Heidelberg: Springer Verlag, 2005. 636 p.

Zlobyn A., Njanyshkene V., Putyncev N. Ekosystemy vodoroslej v izmenjajushhykhsja uslovyjakh sredy obytanyja (Teoryja, eksperyment, predpolozhenyja) [Seagrass ecosystems in a changing environment (theory, experiment, hypothesis)]. Vilnus, 1987. 296 p.

Bardan S.I. Materialy Mezhd. nauch. konf. «Sovremennye klimaticheskie i ekosistemnye protsessy v uyazvimykh prirodnykh zonakh» (g. Rostov-na-Donu, 5-8 sentyabrya 2006 g.) [Proc. Int. Scientific Conf. "Modern climate and ecosystem processes in vulnerable natural areas" (Rostov-on-Don, September 5-8, 2006)]. Rostov-na-Donu: YuNTs RAN Publ., 2006, pp. 22-25. (In Russian).

Bardan S.I. Materialy Mezhd.nauch. conf «Priroda morskoj Arktiki: sovremennye vyzovy i rol' nauki» (g. Murmansk, 10-12 marta 2010 g.) [Abstracts. Rep. Int. Scientific Conf. “Nature Marine Arctic: current challenges and the role of science” (Murmansk, 10-12 March 2010)]. Apatity: KNC RAN, 2010. pp. 24-27. (In Russian).

Bardan S.I. Materialy Mezhd.nauch.conf. «Izuchenie i osvoenie morskih i nazemnyh jekosistem v uslovijah arkticheskogo i aridnogo klimata» (g Rostov-na-Donu, 6-10 ijunja 2011 g) [Research and development of marine and terrestrial ecosystems in arctic and arid climate: Proc. Int. Scientific. Conf. (Rostov-on-Don, 6-10.06.2011)]. Rostov-on-Donu: JuNC RAN, 2011. pp. 20-24. (In Russian).

Bardan S.I., Serbov N.G. Ukr. gìdrometeorol. ž.– Ukranian hydrometeorological journal, 2011, no 9, pp. 210-219. (In Russian).

Pereljman A.I. Izuchaja geohimiju (O metodologii nauki) [Studying the geochemistry ... (About the methodology of science)]. Moscow, 1987. 152 p.

Bardan S.I. Yshkulova T.Gh. Izv. RAN. Ser. Geograf.- Proceedings of the Russian Academy of Sciences, Geography Series, 2010, no 4, pp. 90-100. (In Russian).

Bardan S.I., Korneeva Gh.A. Materialy Mezhd. nauch. conf. «Pryroda sheljfa i arkhypelaghov Evropejskoj Arktyky» (g. Murmansk, 20-23 oktjabrja 2010 g.) [Nature shelf and archipelagos of the European Arctic: Proceedings of Intern. Scientific. Conf. (Murmansk, October 27-30, 2010)]. Murmansk, 2010. pp. 18-25. (In Russian).

Dolghonosov B.M. Nelinejnaja dinamika jekologicheskih i gidrologicheskih processov [Nonlinear dynamics of ecological and hydrological processes]. Moscow, 2009. 440 p.

Zubov N.N. Morskie vody i l'dy [Sea water and ice]. Moscow, 1938. 453 p.

Drummond I.T., Munch W. Turbulent stretching of line and surface elements. J. Fluid Mech., 1990, vol. 215, pp. 45-59.

Muzzio F.J., Ottino J.M. Dynamics of a lamellar system with diffusion and reaction: Scaling analysis and global kinetics. Phys. Rev., 1989, A 40 (12), pp. 7182-7192.

Ottino J.M., Rantz W.E., Macosko C.W. A lamellar model for analysis of liquid -liquid mixing. Chem.Eng.Sci, 1979, vol.34, pp. 877.

SBE 19plus SEACAT PROFILER. User Manual. Version 012. Bellevue, Washington, DC, 2005. 137 p.

Rantz W.E. Fluid mechanical mixing - lamellar description. Mixing of Liquids by Mechanical Agitation. New York: Gordon and Breach, 1985. 15 p. (Eds: Ulbricht J.J., Patterson G.K.).

Braun E.D., Evdokymov Ju.A., Chychynadze A.V. Teorija modelirovanija i vozmozhnosti ee primenenija v tribologii: spravochnik po tribotehnike. T. 1. Teoreticheskie osnovy [Theory of modeling and the possibility of its application in tribology: reference for tribotechnology. Vol.1. Teoretical foundations]. Moscow, 1989. pp. 324-333.

Dolghonosov B.M. Teor. Osnovy Him. Tehnologii - Theoretical Foundations of Chemical Engineering, 2005, vol. 39. no. 3. pp. 282-294. (In Russian).

How to Cite
Bardan, S., Dolgonosov, B., & Serbov, N. (2015). Physical fundamental of layered structure stability of river-sea region (on the example of the Kola Bay). Ukrainian Hydrometeorological Journal, (16), 215-231.
Oceanography and Sea Nature Management