Mesoscale numerical modeling of the boundary atmospheric layer adapted to the north-western Black Sea region. Part 1. Mathematical problem formulation

  • E. V. Ivanova
Keywords: three-dimensional model; boundary layer; parametrization; turbulence; meteorological parameters; cloudiness; heat and water balance

Abstract

The article presents a complete mathematical formulation of the problem of the boundary layer of the atmosphere and the interacting surface layers of the soil with the active layer of the sea adapted to the North-Western Black Sea Region through the inclusion of the coastline shape, relief elevation angles and climatic characteristics of soil moisture. The numerical model is a three-dimensional, unsteady, hydrostatic model with one- or two-parameter closure. The paper presents a detailed description of the applied sub-grid processes parameterizations such as cloudiness in the lower tier, flows of short- and long-wave radiation throughout thickness of the boundary layer and near the Earth, antigradient migration for basic meteorological variables in the presence of neutral or weakly stable stratification, components of water, heat and radiation balance, phase transitions of moisture in the atmosphere, and different parameterizations of turbulent processes used in the model. The possibilities of the model include description of neutral and stable boundary layers with consideration of the kinetic energy of vertical velocity fluctuations instead of the kinetic energy of longitudinal and transverse velocity fluctuations. Identification of the type of the boundary layer at a particular point in time is estimated using values of the Richardson number. In addition, in case of convective conditions presence, parameterization of dry convection and wet-convective adaptation may be implemented. At the boundaries of "free boundary layer – surface or near-water layer of air, air-soil and air-water" certain bonding conditions are to be set to ensure continuity of meteorological parameters or their flows. On the upper boundary of the free boundary layer actual values of meteorological parameters and necessary parameters, or corresponding values from the global atmospheric model are to set. At the lower boundary of the deep soil layer the invariance of the vertical temperature gradient of the active layer of the sea – the value of temperature which is equal to the value of the latter according to its climatic values in the considered season of the year is to be set. The presented model is the first approximation in numerical modeling of the boundary layer over the adapted territory and is designed for studying the thermodynamic structure of the boundary layer of the adapted territory, as well as for identifying the breeze effects over the terrain.

References

1. Lezhenin, A.A. & Speranskiy, L.S. (1984). Prostranstvennaya model' prognoza pogody v nizhney troposphere [Spatial model of weather forecast in the lower troposphere]. Trudy ZapSibNII [Proceedings of the West Siberian Research Institute], 63, рр. 53-62. (in Russ.)

2. Kazakov, A.L., Lezhenin, A.A. & Speranskiy, L.S. (1996). Resultados Preliminares del Estudio de la Capa Limite Mesometeorologica de la Atmosfera en la Costa Norta Colombiana applicando un Modelo Numerico. Boletin Cientifico CIOH, 17, pp. 17-26. (in Span.)

3. Marchuk, G.I. (1979). Chislennoe reshenie zadach dinamiki atmosfery i okeana [Numerical solution of atmospheric and ocean dynamics problems]. Leningrad: Нydrometeorological publishing house. (in Russ.)

4. Speranskiy, L.S. & Lezhenin, A.A. (1985). O primenenii metoda rasshchepleniya v modelyakh pogranichnogo sloya atmosfery [Application of method Of splitting, in models of the atmospheric boundary layer]. Trudy ZapSibNII [Proceedings of the West Siberian Research Institute], 75, pp. 71-78. (in Russ.)

5. Vikhrerazreshayushchee modelirovanie [Vortex-resolving modeling]. Available at: http://www.inm.ras.ru/laboratory/direct2.htm (Accessed: 14.10.2019) (in Russ.)

6. Luk'yanov, I.I. (2016). Sovremennye podkhody k modelirovaniyu turbulentnykh techeniy [Modern approaches to modeling turbulent flows]. Mezhdunarodnyy nauchnyy zhurnal «Simvol nauki» [International scientific journal "Symbol of science"], 12-1, pp. 12-13. (in Russ.)

7. Smirnov, E.M. & Abramov, A.G. (2011). Opyt pryamogo chislennogo modelirovaniya perekhodnoy i turbulentnoy svobodnoy konvektsii vozdukha u nagretoy vertikal'noy plastiny [Experience of direct numerical simulation of transient and turbulent free air convection in a heated vertical plate]. Vesnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Mekhanika zhidkosti i gaza. [Vestnik of Lobachevsky University of Nizhni Novgorod. Mechanics of liquid and gas], 4(3), pp. 1114-1116. (in Russ.)

8. Khotyanovskiy, D.V. & Kudryavtsev, A.N. (2011). Pryamoe chislennoe modelirovanie perekhodnogo sverkhzvukovogo pogranichnogo sloya na ploskoy plastine [Direct numerical simulation of a transient supersonic boundary layer on a flat plate.] Vesnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Mekhanika zhidkosti i gaza [Vestnik of Lobachevsky University of Nizhni Novgorod.. Mechanics of liquid and gas.], 4(3), pp. 1235-1236. (in Russ.)

9. Shokurov, M.V., Artamonov, S.Yu. & Ezau, I.N. (2013). Chislennoe modelirovanie neytral'no stratifitsirovannogo atmosfernogo pogranichnogo sloya [Numerical modeling of neutral stratified atmospheric boundary layer]. Morskoy gidrofizicheskiy zhurnal [Marine hydrophysical journal], 2, pp. 37-50. (in Russ.)

10. Glazunov, A.V. (2006). Modelirovanie neytral'no stratifitsirovannogo turbulentnogo potoka vozdukha nad sherokhovatoy poverkhnost'yu [Modeling of neutral stratified turbulent air flow over a rough surface]. Izv. FAO [Proceedings of atmospheric and ocean physics], 42(3), рр. 307–325. (in Russ.)

11. Glazunov, A.V. (2009). Vikhrerazreshayushchee modelirovanie turbulentnosti s ispol'zovaniem smeshannogo dinamicheskogo lokalizovannogo zamykaniya. Ch. 1. Formulirovka zadachi, opisanie modeli i diagnosticheskie chislennye testy [Vortex-Resolving turbulence modeling using mixed dynamic localized closure. Part 1. Formulation of the problem, model description, and diagnostic numerical tests]. Izv. FAO [Proceedings of atmospheric and ocean physics], 45(1), pp. 7–28. (in Russ.)

12. Shokurov, M.V., Artamonov, S.Yu. & Ezau, I.N. (2013). LES-model' turbulentnogo atmosfernogo pogranichnogo sloya: opisanie i testovye raschety [3D model of turbulent atmospheric boundary layer: description and test calculations]. Morskoy gidrofizicheskiy zhurnal [Marine hydrophysical journal], 1, pp. 3–20. (in Russ.)

13. Bagaev, D.V. & Syraleva, M.N. (2018). Chislennoe modelirovanie svobodno-konvektivnogo techeniya okolo vertikal'noy poverkhnosti nagreva [Numerical simulation of free convection flow near a vertical heating surface]. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra [Proceedings of the Krylov state scientific center], 2(384), pp. 93-98. (in Russ.)

14. Kurbatskaya, L.I. & Kurbatskiy, A.F. (2017). Chislennoe modelirovanie neytral'no stratifitsirovannogo atmosfernogo pogranichnogo sloya s yavnoy algebraicheskoy model'yu turbulentnosti [Numerical simulation of a neutral stratified atmospheric boundary layer with an explicit algebraic turbulence model]. Materialy Mezhdunar. nauch. konf. “Distantsionnye metody zondirovaniya Zemli i fotogrammetriya, monitoring okruzhayushchey sredy, geoekologiya” [Proceedings of the international scientifical conference “Remote sensing methods of Earth and photogrammetry, environmental monitoring, geoecology], April 17-21. Novosibirsk, pp. 94-99. (in Russ.)

15. Obzor metodov rascheta turbulentnykh techeniy. [Review of turbulent flow calculation methods]. Available at: https://cfd.spbstu.ru/agarbaruk/turb_models/Term8_Lec04_review.pdf (Accessed: 14.10.2019) (in Russ.)

16. Lezhenin, A.A. (2007). Chislennoe modelirovanie atmosfernogo pogranichnogo sloya nad neodnorodnoy mestnost'yu [Numerical modeling of atmospheric boundary layer over inhomogeneous terrain]. Interekspo Geo-Sibir' [Interexpo Geo-Siberia], 3, pp. 315-319. (in Russ.)

17. Arguchintsev, V.K., Gutman, L.N., Penenko, V.V. et al. (1975). Prostranstvennaya model' mezometeorologicheskogo pogranichnogo sloya [Spatial model of the mesometeorological boundary layer]. Izv. AN SSSR [News of the USSR Academy of Sciences], 11(4), рр. 14-24. (in Russ.)

18. Lykosov, V.N. (1988). K-teoriya turbulentnogo planetarnogo pogranichnogo sloya atmosfery i obobshchennaya gipoteza Bussineska [K-theory of the turbulent planetary boundary layer of the atmosphere and the generalized Boussinesq hypothesis]. Moscow (Preprint. Institute of computational mathematics of the Russian Academy of Sciences). (in Russ.)

19. O’Brien, J.J. (1970). A Note on the vertical structure of eddy exchange coefficients in the planetary boundary layer. JAS, 27, рр. 1213-1225.

20. Zilitinkevich, S.S., El'perin, T., Kliorin, N. et al. (2009). Zamykanie uravneniy Reynol'dsa dlya ustoychivo stratifitsirovannykh turbulentnykh techeniy v atmosfere i okeane [The closure of the Reynolds equations for stably stratified turbulent flows in the atmosphere and the ocean], Izv. FAO [News of Atmospheric and Oceanic Physics], 4, pp. 75-102. (in Russ.)

21. Monin, A.S. & Yaglom, A.M. (1992). Statisticheskaya gidromekhanika [Statictical fluid mechanics]. In 2 vol. Vol. 1: Teoriya turbulentnosti [Turbulence theory]. Saint-Petersburg: Hydrometeorology Publ. (in Russ.)

22. Lazriev, G.L. & Ioseliani, A.A. (1990). O kharakteristikakh turbulentnosti v prizemnom sloe atmosfery [On the characteristics of turbulence in the surface layer of the atmosphere]. Meteorologiya i gidrologiya [Meteorology and hydrology], 3, pp. 26-31. (in Russ.)

23. Zilitinkevich, S.S. (1970). Dinamika pogranichnogo sloya atmosfery [Dynamics of the atmospheric boundary layer]. Leningrad: Нydrometeorological publishing house. (in Russ.)

24. Kazakov, A.L. & Lykosov, V.N. (1982). O parametrizatsii vzaimodeystviya atmosfery s podstilayushchey poverkhnost'yu pri chislennom modelirovanii atmosfernykh protsessov [On the parametrization of the interaction of the atmosphere with the underlying surface in numerical modeling of atmospheric processes.]. Trudy ZapSibNII [Proceedings of the West Siberian Research Institute], 5, pp. 3-20. (in Russ.)

25. Smagorinsky, J. (1960). On the dynamical prediction of large-scale condensation by numerical methods. Geophys. Monogr., 5, pp. 71-78.

26. Gavrilov, A.S. (1974). Nestatsionarnaya zadacha o planetarnom pogranichnom sloe atmosfere s uchetom radiatsionnogo teploobmena [The nonstationary problem of the planetary boundary layer of the atmosphere, taking into account radiative heat transfer]. Trudy ZSRNIGMI [Proceedings of the West Siberian Research Institute], 11, pp. 35-48. (in Russ.)

27. Khvorost'yanov, V.I. (1981). O skhematizatsii spektra dlinnovolnovogo izlucheniya atmosfery dlya modeley oblakov i tumanov na osnove spektral'nykh raschetov s tonkim razresheniyem po vertikali [On schematization of the spectrum of the long-wave radiation of the atmosphere for models of clouds and fog based on spectral calculations with fine vertical resolution]. Izv.AN SSSR, FAO [News of the Academy of Sciences of the USSR, Physics of the Atmosphere and the Ocean], 17(10), pp. 1022-1030. (in Russ.)

28. Magazenkov, L.N. & Sheynin, D.A. (1988). Skhemy approksimatsii po vertikali i korrektnoy zadachi prognoza dlya baroklinnoy atmosfery [Approximation schemes for the vertical and the correct prediction problem for the baroclinic atmosphere]. Meteorologiya i gidrologiya [Meteorology and hydrology], 6, pp. 43-50. (in Russ.)

29. Marchuk, G.I. (1974). Chislennoye resheniye zadach dinamiki atmosfery i okeana [Numerical solution of problems of the dynamics of the atmosphere and the ocean]. Saint-Petersburg: Hydrometeorology Publ. (in Russ.)

30. Lykosov, V.N. & Platov, G.A. (1988). Chislennoye modelirovaniye pogranichnogo sloya atmosfery nad EAZO Kurosio [Numerical modeling of the atmospheric boundary layer over Eurasian Kuroshio]. Matematicheskoye modelirovaniye protsessov v pogranichnykh sloyakh atmosfery i okeana [Mathematical modeling of processes in the boundary layers of the atmosphere and ocean]. Moscow: Area of Computational Mathematics of the USSR Academy of Sciences, pp. 66-93. (in Russ.)

31. Lykosov, V.N. & Tonkacheyev, Ye.B. (1991). Diagnosticheskoye vosstanovleniye turbulentnykh kharakteristik pogranichnogo sloya atmosfery [Diagnostic recovery of turbulent characteristics of the atmospheric boundary layer]. Meteorologiya i gidrologiya [Meteorology and hydrology], 10, pp. 43-52. (in Russ.)

32. Lykosov, V.N. (1991). O protivogradiyentnom perenose momenta v struynom techenii nizkogo urovnya [On the countergradient moment transfer in a low-level jet stream]. Izv. FAO [News of Atmospheric and Oceanic Physics], 27(8), pp. 803-811. (in Russ.)

33. Deardorff, J.W. (1978). Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J.Geophys.Res., 83(C4), pp. 1889-1903.

34. Sukhorukov, V.A. & Dmitriyev, N.V. (1986). Teoriya statsionarnogo ustoychivo stratifitsirovannogo dreyfovogo sloya treniya okeana [The theory of stationary, stably stratified drift layer of ocean friction]. Morskoy gidrofizicheskiy zhurnal [Marine Hydrophysical Journal], 5, pp. 9-18. (in Russ.)
Published
2019-12-09
How to Cite
Ivanova, E. V. (2019). Mesoscale numerical modeling of the boundary atmospheric layer adapted to the north-western Black Sea region. Part 1. Mathematical problem formulation. Ukrainian Hydrometeorological Journal, (24), 5-22. https://doi.org/10.31481/uhmj.24.2019.01
Section
Meteorology and Climatology