Mesoscale numerical modeling of the boundary layer of the atmosphere adapted to the Northwestern Black Sea region. Part 2. Finite-difference solution and adaptation to real physical and geographical conditions of the area
Abstract
The article describes the finite-difference solution of the system of differential equations of the atmospheric boundary layer hydrothermodynamics adapted to the Northwestern Black Sea region. The research presents the description of the sequence of calculations schematically shown on the flowchart. The applied mathematical model was adapted in relation to five aspects: coast geomorphology (coastline shape), land geomorphology (actual terrain of the studied territory), thermal and physical characteristics of soil (density, specific gravity, porosity, thermal conductivity factor), roughness (roughness parameter) and optical characteristics (albedo) of the underlying surface. The coastline shape was described with consideration of water proportion available in the current cell of the spatial grid. If the proportion exceeded 50 %, it was assumed that such cell includes land, and vice versa. The terrain matrix was formed by removing the elevation values at each point of the calculated area from official electronic elevation maps. The thermal and physical characteristics of the soil were set depending on a type of soil observed at the current calculated point. The method of roughness elements double recording during growing and non-growing periods of the year was used to consider the roughness of the underlying surface. This method consists in the fact that, depending on the agricultural zoning and its subject content, there is a certain background weighted average value of roughness elements ensemble elevation that transforms into a roughness parameter through the proportionality factor. In such a case, the proportionality factor is linked to a type of a real roughness element at a specific point. Thus, a comprehensive assessment of roughness features of the territory under study was obtained. The albedo of the underlying surface was taken for three various periods of the year: growing period (April-September), post-growing period – months before winter and the first month of spring (October-November, March) and winter period (December-February). Nature of the external coating of the underlying surface related to optical properties should be also taken into account.
References
Tarnapol'skiy, A.G. (2002). Matematicheskoe modelirovanie i prikladnye zadachi geofizicheskogo pogranichnogo sloya [Mathematical modeling and the relevant objectives of the geophysical boundary layer]. Odessa: "TES". (in Russ.)
Tarnopol'skiy, A.G. & Shnaydman, V.A. (1984). Modelirovanie vzaimodeystvuyushchikh atmosfernogo i pogranichnogo sloev [Modeling of interacting atmospheric and boundary layers]. Meteorologiya i gidrologiya [Meteorology and hydrology], 5, pp. 48-56. (in Russ.)
Tarnopol'skiy, A.G. & Shnaydman, V.A. (1991). Modelirovanie pogranichnogo sloya atmosfery dlya gorodskoy zastroyki i prigorodnoy zony [Modelling of atmospheric boundary layer for urban and suburban areas]. Meteorologiya i gidrologiya [Meteorology and hydrology], 1, pp. 41-47. (in Russ.)
Tarnopol'skiy, A.G. & Shnaydman, V.A. (1995). Teoreticheskie osnovy i operativnaya skhema rascheta kharakteristik turbulentnogo obmena v shel'fovoy zone morya [Theoretical bases and operational scheme of calculation of characteristics of turbulent exchange in the offshore zone of the sea]. Issledovanie shel'fovoy zony Azovo-Chernomorskogo basseyna [Study of the shelf zone of the Azov-black sea basin], pp. 168-177. (in Russ.)
Tarnapol'skiy, A.G. (2001). Modelirovanie rasprostraneniya neftyanoy plenki na poverkhnosti morya posle avariynogo razliva [Modeling of oil film spreading on the sea surface after an emergency spill]. Meteorologiya, klimatologiya i gidrologiya [Meteorology, climatology and hydrology], 43, pp. 198-210. (in Russ.)
Tarnapol'skiy, A.G. (1994). Modelirovanie geofizicheskikh protsessov shel'fovoy zony morya [Modeling of geophysical processes of the offshore zone of the sea]. Diagnoz sostoyaniya morskoy sredy Azovo-Chernomorskogo basseyna [Diagnosis of the state of the marine environment of the Azov-black sea basin], Sevastopol: MHI NAS of Ukraine. pp. 145-151. (in Russ.)
Ivanova, E.V. (2019). Adaptirovannoe k severo-zapadnomu Prichernomor'yu mezomasshtabnoe chislennoe modelirovanie pogranichnogo sloya atmsofery. Chast' 1. Matematicheskaya postanovka zadachi [The mesoscale numerical simulation of the atmosphere boundary layer adapted to the North-Western Black sea region. Part 1. Mathematical formulation of the problem.]. Ukraïnsʹkij gìdrometeorologìčnij žurnal [Ukrainian hydrometeorological journal], 23, рр. 5-22. (in Russ.) https://doi.org/10.31481/uhmj.24.2019.01
Speranskiy, L.S. & Lezhenin, A.A. (1985). O primenenii metoda rasshchepleniya v modelyakh pogranichnogo sloya atmosfery [An application of method Of splitting, in models of the atmospheric boundary layer]. Trudy ZapSibNII [Proceedings of the West Siberian research Institute], 75, pp. 71-78. (in Russ.)
Lezhenin, A.A. & Speranskiy L.S. (1984). Prostranstvennaya model' prognoza pogody v nizhney troposfere [Spatial model of weather forecast in the lower troposphere]. Trudy ZapSibNII [Proceedings of the West Siberian research Institute], 63, pp.53-62. (in Russ.)
Repinskaya, R.P. & Aniskina, O.G. (2002). Konechno-raznostnye metody v gidrodinamicheskom modelirovanii atmosfernykh protsessov [Finite-difference methods in hydrodynamic modeling of atmospheric processes]. Saint-Petersburg: LLC "Concept". (in Russ.)
Marchuk, G.I. (1979.) Chislennoe reshenie zadach dinamiki atmosfery i okeana [Numerical solution of atmospheric and ocean dynamics problems]. Lеningrad: Нydrometeorological publishing house. (in Russ.)
Karta vysot [Height map]. Available at: http://radiofanatic.ru/karta-vysot.html (Accessed: 15 February 2019). (in Russ.)
Grunty [Soils]. Available at: http://geomap.land.kiev.ua/soils.html (Accessed: 15 February 2019). (in Ukr)
Krupskiy, N.K. & Polupan, N.I. (1979). Atlas pochv Ukrainskoy SSR [Atlas of soils of the Ukrainian SSR]. Kiev: Publ «Urozhaj». (in Russ)
Shein, E.V. (2005). Kurs fiziki pochv [Soil physics course]. Moscow: Publishing house of Moscow state University. (in Russ)
Edinyy gosudarstvennyy reestr pochvennykh resursov Rossii [Unified state register of soil resources of Russia]. Available at: http://egrpr.esoil.ru/content/soils/soil134.html (Accessed: 1 March 2019). (in Russ)
Kharakteristika osnovnykh tipov pochv [Characteristics of the main types of soils]. Available at: https://infopedia.su/8xb5db.html (Accessed: 15 March 2019). (in Russ)
Izuchenie vodno-fizicheskikh i khimicheskikh svoystv pochvy Priazovskikh plavney [Study of water-physical and chemical properties of the soil of the Priazovsky floodplains]. Available at: https://livescience.ru/Статьи:Свойства-почвы-Приазовских-плавней (Accessed: 20 March 2019). (in Russ)
Vershinin, P.V., Mel'nikova, M.K., Michurin, B.N. et al. (1959). Osnovy agrofiziki [Fundamentals of agrophysics]. Moscow: State publishing house of physical and mathematical literature. (in Russ)
Martin, A.G., Osipchuk, S.O. & Chumachenko, O.M. (2015). Pryrodno-sіlskogospodarske raionuvannia Ukrainy [Natural and agricultural zoning of Ukraine]. Kyiv: «Komprint».
Mlyavaea, G.V. (2014). Vliyanie parametrov sherokhovatosti podstilayushchey poverhnosti na skorost' vetra [Influence of the underlying surface roughness parameters on wind speed]. Buletinul AŞM. Ştiinţele vieţii [ASM ID. Life sciences], 2(323), pp. 181-187.
Klіmatychnyi kadastr Ukrainy [Climate cadastre of Ukraine]. (2006). CGO, UR HMI.
This work is licensed under a Creative Commons Attribution 4.0 International License.