Biogeochemical lichen indication study of formation and temporal changes of Oleksandriia Arboretum atmospheric pollution

  • O. V. Shabatura
  • Yu. H. Tyutyunnyk
  • O. B. Blum
Keywords: lichens, biogeochemical lichen indication, macro- and microelements, heavy metals, air pollution, factor analysis, Оlexandriia Arboretum


Using the method of biogeochemical lichen indication the levels of the average long-term content of K, Ca, Al, Fe, Mg, Na, Mn, Zn, Sr, Ti, Ba Cu, B, Pb, Ni, V, Cr, Co, Cd, Se, Sb in surface air were measured on the territory of Olexandriia Arboretum and adjacent territories (Bila Tserkva, Kyiv Region, Ukraine). The purpose of the study is to determine the state and dynamics of the atmospheric geochemical field on the territory of Olexandriia Arboretum and its surroundings. The method of biogeochemical lichen indication based on the values of micro- and macroelements content in epiphytic lichens was used as a research tool. Application of the ICP-OES spectroscopy method allowed the analysis for chemical elements content of the samples of epiphytic deciduous Parmelia sulcata, Xanthoria parietina and bushy Evernia prunastri lichens collected in 2009 (20 points) and 2021 (23 points).

In order to identify possible sources of entering of certain elements into lichens the researchers used the factor analysis method, i.e. a method of principal components with Varimax factors rotation. Six obtained factors represent: the impact of land cover (the most significant factors F1–F3) and man-made components (minor polygenetic, factors F4–F6). As a factor's number decreases, its partial explanatory variance decreases too. Factor F1 represents a common dust loading on the atmosphere with a predominance of the terrigenous component (mostly coarse-dispersed particles). Factor F1 is responsible for the dust-aerosol loading that is largely caused by the microclimatic circulation of the city breeze type thus forming a peculiar atmospheric and geochemical association that consists of chemical elements related to the building industry and building materials production. Powerful, however, local (impactful) atmospheric man-made influences manifest themselves through factor F3. Minor factors' discrimination ability reduces if a source of atmospheric pollution is less significant. Both division of factors into subfactors and noticeable temporal dynamics are observed more often. For instance, factor F4 has two geochemical sub-associations affected by the impact on the Olexandriia's landscapes of the 1990s' ecological disaster (fall-out of oil products, geochemical marker – V) and galvanic waste causing soil pollution (Zn, Mg, Cr, Ni and Ti), as well as discharges of agricultural enterprises (K). One of the peculiarities of F4 is a gradual decrease in its intensity over time. Factor F5 should be interpreted as the only load on the environment associated with galvanic pollution with cobalt being replaced by copper as a leading pollution marker. We suggest considering Factor F6 as a factor associated with oil pollution only.


Blum, O.B. & Tyutyunnik, Yu.G. (1985). Istoricheskiy biomonitoring soderzhaniya svintsa v atmosfere s pomoshch'yu lishaynikov [Historical biomonitoring of lead content in the atmosphere using lichens]. Doklady Akademii nauk USSR [Rep. of Acad. Sc. Ukrainian SSR]. B. N.10., pp. 53-55. (in Russ.)

Blum, O.B. & Tyutyunnik, Yu.G. (1989). Istoricheskiy aspekt issledovaniya obnaruzheniya metallov v atmosfere, voskreseniye biogeokhimicheskoy likhenoindikatsii (po rasprostraneniyu Ukrainskoy SSR) [Historical aspect of regional monitoring of heavy metals in the atmosphere, carried out by the method of biogeochemical lichen indication (on the example of the Ukrainian SSR)]. Problemy ekologicheskogo monitoringa i modelirovaniya ekosistemy [Problems of ecological monitoring and modeling of ecosystems]. vol.12. pp. 73-78. (in Russ.)

Sloof, J.E. & Wolterbeek, H.Th. (1991). Patterns in trace elements in lichens. Water, Air, and Soil Pollution, vol. 57-58, №1, pp. 785-795.

Sloof, J., & Wolterbeek, H. (1991). National Trace-Element Air Pollution Monitoring Survey Using Epiphytic Lichens. The Lichenologist., 23(2), pp. 139-165.

Agnan, A., Séjalon-Delmas, N., Claustres, A. & Probst, A. (2015). Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Science of the Total Environment, vol. 529(1), pp. 285-296.

Cloquet, Ch., Estradea, N. & Carignanc, J. (2015). Ten years of elemental atmospheric metal fallout and Pb isotopic composition monitoring using lichens in northeastern France. Comptes Rendus Geoscience, vol. 347(5), pp. 257-266.

Kovalevsky, A.L. (1991) Biogeokhimiya rasteniy [Biogeochemistry of plants]. Novosibirsk : Nauka, Sib. Department. (in Russ.).

Blum, O.B., Tyutyunnik, Yu.G. & Pashchenko, V.M. (1988). Bioheokhimichna likhenoindykatsiya vazhkykh metaliv u pryzemnomu shari povitria miskykh landshaftiv [Biogeochemical lichenoindication of important metals in the surface area of the earthly landscapes] Ukrainskiy botanicheskiy zhurnal [Ukr. bot. journal], №3, pp. 66-71. (in Ukr.)

Tyutyunnik, Yu.G., Blum, O.B., Daunis y Estadella, J., Martin-Fernandez, J.-A. (2014). Geostatisticheskiy analiz tekhnogennogo vozdushnogo issledovaniya nelesoparkovogo landshafta (nakhozhdeniya goroda Kiyeva) [Geostatistical analysis of man-made air influence on a non-forest landscape (on the example of the city of Kyiv)]. Geografiya i prirodnyye resursy [Geography and Natural Resources], №.1, pp. 68-74. (in Russ.).

Pleskach, L.Ya. (2004). Zabrudnennya vodoim dendroparku «Oleksandríya» i yoho vplyv na stan roslinosti [Pollution of reservoirs of the Arboretum "Olexandria" and its effect on the state of vegetation] Introduktsíya roslyn [Introduction of Plant], 2, pp. 80-87. (in Ukr.)

Pleskach, L.A. (2005). Issledovaniye vidovogo sostava travyanistoy flory tekhnogenno zagryaznennykh vodoyemov dendroparka «Aleksandriya» [Study of the species composition of the herbaceous flora of man-made polluted reservoirs of the arboretum "Alexandria"]. Botanicheskiye sady kak tsentry sobraniya i yestestvennogo ispol'zovaniya rastitel'nykh resursov [Botanical gardens as centers for the conservation and rational use of plant resources], pp. 401-403. (in Russ.).

Pleskach, L.Ya. (2008). Vydovyi sklad derevnoí ta travianystoí roslynností tekhnohenno zabrudnenykh vod dendroparku «Oleksandríia» [Species warehouse of wood and grassy growths of man-made polluted water near the Oleksandriya arboretum] Vísnyk Odeskoho natsionalnoho universitetu [Bulletin of the Odessa National University], 13(16), pp.35-40. (in Ukr.)

Tyutyunnik, Yu.G., Daunis y Estadella, Blum, O.B. & Martin-Fernandez, D.A. (2012) Issledovaniye geneticheski razlichnykh poley porazheniya okhranyayemoy territorii: geostatisticheskiy analiz dannykh bioindikatsii [Study of genetically different pollution fields in protected areas: geostatistical analysis of bioindication data] Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya [Geoecology. Engineering geology. Hydrogeology. Geocryology], 4. pp. 336-343. (in Russ.)

Kuik, P. & Wolterbeek, H.T. (1994). Factor analysis of trace-element data from tree-bark samples in The Netherlands. Environ Monit Assess, 32, pp. 207–226,

Jeran, Z., Jacimovic, R., Batic, F., Smodis, B. & Wolterbeek, H.Th. (1996). Atmospheric heavy metal pollution in Slovenia derived from results for epiphytic lichens. Fresenius J Anal Chem, 354, pp. 681-687.

Balabanova, B., Stafilov, T., Šajn, R. & Baèeva, K. (2012). Characterisation of Heavy Metals in Lichen Species Hypogymnia physodes and Evernia prunastri due to Biomonitoring of Air Pollution in the Vicinity of Copper Mine. International Journal of Environmental Research, 2(3), pp. 779-794.

Seregin, I.V. & Kozhevnikova, A.D. (2008). Rol' tkaney kornya i pobega v transporte i nakoplenii kadmiya, svintsa, nikelya i strontsiya [The role of root and shoot tissues in the transport and accumulation of cadmium, lead, nickel and strontium] Fiziologiya rasteniy [Plant Physiology], 55(1), pp. 3-26. (in Russ.)

Vasilevich, M.I. & Vasilevich, R.S. (2018). Features of Heavy Metal Accumulation by Epiphytic Lichens in Background Areas of the Taiga Zone in the European Northwest of Russia. Russian Journal of Ecology, 49(1), pp. 14–20.

Dörter, M., Karadeniz, H., Saklangıç, U. & Yenisoy-Karakaş, S. (2020). The use of passive lichen biomonitoring in combination with positive matrix factor analysis and stable isotopic ratios to assess the metal pollution sources in throughfall deposition of Bolu plain, Turkey. Ecological Indicators, 2020-06/01, pp. 43-62.

Lazo, P., Steinnes, E., Qarri, F., Allajbeu, Sh., Kane, K., Stafilov, T., Frontasyeva, M.V. & Harmens, H. (2018). Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe. Chemosphere, 190, pp. 337–349.

Achkasov, A.I., Basharkevich, I.L., Onishchenko, T.L. et al. Geokhimiya okruzhayushchey sredy [Geochemistry of the environment]. Moscow: Nedra, 1990. (in Russ.)

Pleskach, L.Ya. (2002). [Phytotoxicity of man-made soiled soils in the arboretum "Oleksandriya" of the National Academy of Sciences of Ukraine]. Introduction of plants. [Introduction of plants], 1, pp. 122-128. (in Ukr.)

Davydova, S.L. & Tarasov, V.I. Neft' i nefteprodukty v okruzhayushchey srede [Oil and oil products in the environment]. Moscow : Publishing House of RUDN University, 2004. (in Russ.).

How to Cite
Shabatura, O. V., Tyutyunnyk, Y. H., & Blum, O. B. (2023). Biogeochemical lichen indication study of formation and temporal changes of Oleksandriia Arboretum atmospheric pollution. Ukrainian Hydrometeorological Journal, (32), 115-129.
Environmental Aspects of Nature Management