New geography-mathematic approaches in the tasks of design of distribution of harmful admixtures in an atmosphere
Abstract
It is presented a qualitative overview of the new conceptual approaches, which are based on the provisions of the chaos theory, dynamical systems theory, fractal geometry, analysis of Lyapunov exponents, and others, to problems of modeling the propagation of pollution impurities in the atmosphere of industrial cities and predicting the evolutionary dynamics. We summarize the main ideas of these approaches with emphasis on the analysis of time series of concentrations of pollution impurities in the atmosphere, as well as an analysis that shows that the chaotic regime of the time evolution of the characteristics of deterministic dynamical systems, in particular, the application of ecological systems is, in fact, a non-linear phenomenon which in principle can not be described on the basis of the classical linear regular-dynamic models.
References
Lorenz E.N. Deterministic nonperiodic flow. J. Atmos. Sci., 1963, vol. 20, pp. 130-141.
Mandelbrot B. The Fractal geometry of nature: trans. engl. Moskow: Institute of computer science, 2002. 656 p. (In Russian).
May R.M. Simple mathematical models with very complicated dynamics. Nature, 1976, vol. 261, pp. 459-467.
Lichtenberg A.J., Liebermann M.A. Regular and chaotic dynamics. NY: Springer-Verlag, 1992. 482 p.
Lanfredi M., Machhiato M. Searching for low dimensionality in air pollution time series. Erophys. Lett., 1997, vol. 40, pp. 589-594.
Chelani A.B. Predicting chaotic time series of PM10 concentration using artificial neural network. Int. J. Environ. Stud., 2005. vol. 62, pp. 181-191.
Bunakova Y.Y. Tezy dopovidei IX naukovoi konferentsii molodyh uchenyh ODEKU [Abstracts of the IX Conference of Young Scientists of OSENU]. Odessa, 2009, pp. 142 (In Russian).
Glushkov A.V., Loboda N.S., Khokhlov V.N., Serbov N.G., Svinarenko A.A., Burakova Y.Y. Chaos in a time series concentrations of pollutants in the atmosphere: short term forecast. Vìsn. Odes. derž. ekol. unìv. – Bulletin of Odessa state environmental university, 2008, iss. 5, рp. 225-235 (In Russian).
Bunyakova Yu.Ya., Glushkov A.V., Dudinov A.A. Short-range forecast of atmospheric pollutants using non-linear prediction method. Abstr. of the European Geosciences Union General Assembly 2011, Vienna (Austria), 2011, pp. A3.4.
Paluš M., Pelikán E., Eben K., Krejčíř P., Juruš P. Nonlinearity and prediction of air pollution. Artificial neural nets and genetic algorithms. Wien: Springer, 2001, pp. 473–476 (Eds: V. Kurkova, N.C. Steele, R. Neruda, M. Karny).
Rusov V.D., Glushkov A.V., Vaschenko V.N. Astrophysical model of global climate of the earth. Kyiv: Naukova Dumka, 2003. 212 р. (In Russian).
Rusov V.D., Glushkov A.V., Vaschenko V.N., Myhalus O.T., Bondartchuk Yu.A. et al. Galactic cosmic rays – clouds effect and bifurcation model of the earth global climate. Part 1. Theory. Journal of Atmospheric and Solar-Terrestrial Physics. The Netherlands: Elsevier, 2010, vol.72, pp.498-508.
Rusov V.D. Pavlovich V.N., Ilic R., Jacimovic R., Bondarchuk J.A. et al. Ukra]nskii antarktychnyi zhurnal - Ukrainian Antarctic Journal, 2006, no. 4-5, рp. 137-159 (In Russian).
Glushkov A.V., Loboda N.S., Khokhlov V.N. Neural networks & multi-fractal modelling the frustrated aquifer systems. “Under-ground” hydrology and global Earth angular momentum disbalance resources. Water resources in Asia Pasific Region. Kyoto (Japan), 2003, pp.1355-1358.
Glushkov A.V., Khokhlov V.N., Tsenenko I.A. Atmospheric teleconnection patterns and eddy kinetic energy content: wavelet analysis. Nonlinear Processes in Geophysics, 2004, vol.11, no.3, pp.285-293.
Glushkov A.V., Khokhlov V.N., Bunyakova Yu.Ya., Bykowszczenko N. Modelling air pollution field structure in the industrial city’s atmosphere: Correlation integral method and fractal dimension. Geophysical Research Abstracts (Abstr. of the European Geo-sciences Union General Assembly 2006. Vienna (Austria), 2006, vol. 8, pp.00806.
Khokhlov V.N., Glushkov A.V., Loboda N.S., Bunyakova Yu.Ya. Short-range forecast of atmospheric pollutants using non-linear prediction method. Atmospheric Environment. The Netherlands: Elsevier, 2008, vol.42, pp. 7284-7292.
Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya. Modeling greenhouse gas concentration fields using chaos theory. 18 th. Intern. Symp. Transport and Air Pollution. May 18 - 19, 2010. Dubendorf (Switzerland), pp.06.
Bunakova Yu.Ya., Glushkov A.V., Khokhlov V.N. The structure of the field of air pollution industrial city: stochasticity and effects of chaos. Meteorologiya, klimatologiya, gidrologiya - Meteorology, climatology, hydrology, 2005, vol. 49. pp. 347- 352 (In Russian).
Glushkov A.V., Serga E.N., Bunakova Y.Y. Chaos in a time series concentrations of pollutants in the atmosphere (Odesa). Vìsn. Odes. derž. ekol. unìv. – Bulletin of Odessa state environmental university, 2009, iss. 8, pp. 233-238 (In Russian).
Gottwald G.A., Melbourne I. Testing for chaos in deterministic systems with noise. Physica D., 2005, vol. 212, pp. 100-110.
Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series. Phys. Rev. Lett., 1980, vol. 45, pp. 712-716.
Pesin Ya.B. Characteristic Lyapunov exponents and smooth ergodic theory. Uspehi matematicheskih nauk - Advances of Mathematical Sciences, 1977, vol. 32, pp. 55-112 (In Russian).
This work is licensed under a Creative Commons Attribution 4.0 International License.