Ukrainian segment of the ENTLN (LIGHTNING FINDING SYSTEM)

  • O. A. Kryvobok
  • O. O. Kryvoshein
  • M. M. Koman
  • E. O. Krupa
Keywords: lightning finding, the ENTLN system, data processing, lightning discharges

Abstract

The Ukrainian segment of the Earth Networks lightning finding system created in 2016 is dis-cussed in the paper. It consists of 12 sensors located in different parts of Ukraine which allow identifying both types of lightning: "cloud-to-ground discharge (CG)" and "cloud-to-cloud dis-charge (CC)". The stated number of sensors covers the entire territory of Ukraine and allows the determination of CG with a probability of 95 % with the spatial accuracy of lightning detection constituting about 200 meters. Taking into account the necessity to preserve the equipment, an agreement was reached with the Ukrainian Hydrometeorological Centre on installation of light-ning finding sensors within the territory of meteorological stations. Significant advantage of this lightning finding system is that it allows recording of electromagnetic lightning signals within the range from 1 Hz to 12 MHz. Due to this, the spatial position of CG and CC can be determined more accurately by analyzing the spectrum of electromagnetic signal within the specified range. To localize a lightning discharge using the ENTLN network the method of lightning finding based on the principle of "time of signal arrival (ToA)" is applied. The primary data obtained from the lightning finding sensors are analyzed in the internal system of centralized processing and can be used further by a consumer in two ways: either directly, or serve as output data for series of prod-ucts resulted from processing using mathematical, statistical and geographic information systems. In order to process obtained data the UHMI developed a modular system that allows unification of the means of primary and secondary processing of output data and enabling all necessary channels for transmission of generated data using a wide range of protocols. To visualize the lightning data a subsystem based on the open GeoServer for preprocessing of the geodata and client tools using the mapping data of OpenStreetMap are used. As an example of one of possibilities these lightning data provide, the analysis of the spatial and temporal distribution of lightning activity over the ter-ritory of Ukraine from June 10 to September 30, 2016 has been done and the results showed that these data could be a new, qualitative source of data for climatological studies. In addition, real-time data acquisition allows creation of a series of products for a wide range of consumers inter-ested in a short-term forecasting.

References

1. Earth networks company. Available at: https://www.earthnetworks.com/ (accessed: 10.10.2017)

2. Charlie Liu, Chris Sloop, Stan Heckman. (2014). Application of lightning in predicting high impact weather. Preprints, WMO Technical conference on meteorological and environmental instruments and methods of observation, July 7-9, Saint Petersburg, Russian Federation.

3. Cummins, K.L., Pyle, R.B., Fournier, G. (1999). An integrated North American lightning detection network. Preprints, 11th International Conference on Atmospheric Electricity, June 7-11, Guntersville, Alabama, pp. 218-221.

4. Orville, R.E., Huffines, G.R., Burrows, W.R., Holle, R.L., Cummins, K.L. (2002). The North American lightning detection network (NALDN) - First results: 1998-2000. Monthly Weather Review, August, 130(8).

5. TOA system. Available at: http://www.uspln.com/ product.html (accessed: 10.10.2017).

6. Wolfgang Schulz, Gerhard Diendorfer, Stéphane Pedeboy, Dieter Roel Poelman. (2016). The European lightning location system EUCLID - Part 1: Performance analysis and validation. Nat. Hazards Earth Syst. Sci., 16, 595-605.

7. Japan Lightning Detection Network (JLDN). Available at: http://www.franklinjapan.jp/ contents/observation/jldn/ (accessed: 15.10.2017)

8. Naccarato, K.P., Pinto, Jr.O. (2008). The third generation relative detection efficiency model for the brazilian lightning detection network (brasildat). 20th International Lightning Detection Conference, 21-22 April. Tucson, Arizona USA.

9. Naccarato, K.P., Pinto, Jr.O., Pinto, I. (2006). Different types of detection efficiency models to correct cloud-to-ground data obtained by Lightning Detection Networks. Proceedings of the International Conference on Grounding and Earthing & 2nd International Conference on Lightning Physics and Effects. SB-RAI, Maceió, CD-ROM, Nov.

10. Abreu, D., Chandan, D., Holzworth, R.H., Strong, K. (2010). A performance assessment of the World Wide Lightning Location Network (WWLLN) via comparison with the Canadian Lightning Detection Network (CLDN). Atmos. Meas. Tech., 3, 1143-1153.

11. Evert, R., Schulze, G. (2005). Impact of a new lightning detection and location system in South Africa, Power Engineering Society Inaugural Conference and Exposition in Africa, 2005 IEEE. URL: https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10730 (accessed at 15.10.2017)

12. Australian largest lightning detection network. Available at: http://www.gpats.com.au/ (accessed: 15.10.2017)

13. Jiahong Chen, Yubin Wu, Zhibin Zhao. (2010). The New lightning detection system in China: Its method and performance. Conference: Electromagnetic Compatibility (APEMC), Asia-Pacific Symposium.

14. Nikitin, D. (2010). [Lightning detection system on guard of electric facilities]. Profesionalnyy zhurnal [Professional magazine], 06 (7, 8), 17-20. (in Russ.)

15. Vaisala Lightning detection network. Available at: http://www.vaisala.com/en/products/thunderstormandlightningdetectionsystems/Pages/GLD360.aspx (accessed: 17.10.2017)

16. Demetriades, N.W.S., Pohjola, H., Murphy, M.J., Crame, J.A. (2010). Validation of vaisala’s global lightning dataset (GLD360). Preprints, WMO Technical conference on meteorological and environmental instruments and methods of observation, 30 August – 1 September, Helsinki, Finland.

17. Rodger, C.J., Brundell, J.B., Dowden, R.L. (2005). Location accuracy of VLF World Wide Lightning Location (WWLL) network: Post-algorithm upgrade. Ann. Geophys., 23, 277-290.

18. Rodger, C.J., Werner, S.W., Brundell, J.B., Thomson, N.R., Lay, E.H., Holzworth, R.H., Dowden, R.L. (2006). Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 3197- 3214.

19. Jacobson, A.R., Holzworth, R., Harlin, J., Dowden, R., Lay, E. (2006). Performance assessment of the World Wide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as Ground Truth. J. Atmo. Oceanic Tech., 23, 1082-1092.

20. Lay, E.H., Jacobson, A.R., Holzworth, R.H., Rodger, C.J., Dowden, R.L. (2007). Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. J. Geophys. Res., 112, D13111, doi:10.1029/2006JD007944.

21. Betz, H.D., Schmidt, K., Oettinger, W.P. (2008). LINET - An international VLF/LF lightning detection network in Europe. Lightning: Principles, Instruments and Applications. Dordrecht, NL: Springer Verlag, pp. 115-140.

22. Betz, H.D., Schmidt, K., Laroche, P., Blanchet, P., Oettinger, W.P., Defer, E., Dziewit, Z., Konarski, J. (2008). LINET - An international lightning detection network in Europe. Atmos. Res. doi:10.1016/j.atmosres.2008.06.01

23. Sidik, M.A.B., Shahroom, H.B., Salam, Z., Buntat, Z., Nawawi, Z., Ahmad, H., Jambak, M.I., Arief, Y.Z. (2015). Lightning monitoring system for sustainable energy supply: A review. Renewable and Sustainable Energy Reviews, August 2015, doi: 10.1016/j.rser.2015.04.045

24. Kryvobok, O., Kulbida, M., Savchenko, L. (2011). Monitoring of Severe Weather in Ukraine With the Use of Satellite Data. Use of satellite and in-situ Data to Improve Sustain-ability/ Part of the series NATO Science and Security/ Series C/Environmental Security. Netherlands: Springer, pp. 41-48

25. Lipinsky, V.М. (Ed). (2003). Klimat Ukrainy [The climate of Ukraine]. Kyiv: Raevsky Publishing House. (in Ukr.)

26. Malan, D.J. (1963). Physics of Lightning. London: The English Universities Press, Ltd.

27. Pierce, E.T. (1977). Atmospherics and radio noise, in Lightning. In: R.H. Golde (Ed.). Lightning: Physics of Lightning, 01, 351-384.

28. Murphy, M.J., Cummins, K.L. 2-D and 3-D cloud discharge detection, 1998. (1998). Intl. Lightning Detection Conf., Tucson, AZ, Global Atmospherics, Inc.

29. Smith, D.A., Shao, X.M., Holden, D.N., Rhodes, C.T., Brook, M., Krehbiel, P.R. et al. (1999). A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J. Geophys. Res.,104, 4189-4212.

30. Lewis, E.A., Harvey, R.B., Rasmussen, J.E. (1960). Hyperbolic direction finding with sferics of transatlantic origin. J. Geophys. Res., 65, 1879-1905.

31. Fagan, D., Meier, R. (2011). Intelligent time of arrival estimation. IEEE forum on integrated and sustainable transportation system (FISTS).

32. Stan Heckman. (2014). ENTLN Status Update. XV International Conference on Atmospheric Electricity, 15-20 June, Norman, Oklahoma, U.S.A.

33. Google maps APIs. Available at: https://developers.google.com/maps/ (accessed: 01.11.2017)

34. Yandex maps APIs. Available at: https://tech.yandex.com/maps/ (accessed: 01.11.2017)

35. Bing maps. Available at: https://www.bingmapsportal.com/ (accessed: 01.11.2017)

36. Developer network YAHOO. Available at: https://developer.yahoo.com/maps/ (accessed: 01.11.2017)

37. OpenStreetMap/Wikipedia. Available at: http://wiki.openstreetmap.org/wiki/API (accessed: 01.11.2017)

38. Mazin, I.P, Khrgian, A.Kh. (1989). Oblaka i oblachnaya atmosfera. Spravochnik [Clouds and cloudy atmosphere. Directory]. Leningrad: Gidrometeoizdat.

39. Logvinov, K.T., Babichenko, V.N., Kulakovskaya, M.U. (1972). Opasnye yavleniya pogody v Ukraine [Dangerous weather phenomena in Ukraine]. Leningrad: Gidrometeoizdat.
Published
2018-03-20
How to Cite
Kryvobok, O. A., Kryvoshein, O. O., Koman, M. M., & Krupa, E. O. (2018). Ukrainian segment of the ENTLN (LIGHTNING FINDING SYSTEM). Ukrainian Hydrometeorological Journal, (21), 5-20. https://doi.org/10.31481/uhmj.21.2018.01
Section
Meteorology and Climatology